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A massive increase in the number of neurons in the cerebral
cortex, driving its size to increase by five orders of magnitude,
is a key feature of mammalian evolution. Not only are there
systematic variations in cerebral cortical architecture across spe-
cies, but also across spatial axes within a given cortex. In this
article we present a computational model that accounts for
both types of variation as arising from the same developmental
mechanism. The model employs empirically measured parameters
from over a dozen species to demonstrate that changes to the
kinetics of neurogenesis (the cell-cycle rate, the progenitor death
rate, and the “quit rate,” i.e., the ratio of terminal cell divisions)
are sufficient to explain the great diversity in the number of cor-
tical neurons across mammals. Moreover, spatiotemporal gra-
dients in those same parameters in the embryonic cortex can
account for cortex-wide, graded variations in the mature neural
architecture. Consistent with emerging anatomical data in several
species, the model predicts (i) a greater complement of neurons
per cortical column in the later-developing, posterior regions of
intermediate and large cortices, (ii) that the extent of variation
across a cortex increases with cortex size, reaching fivefold or
greater in primates, and (iii) that when the number of neurons
per cortical column increases, whether across species or within
a given cortex, it is the later-developing superficial layers of the
cortex which accommodate those additional neurons. We posit that
these graded features of the cortex have computational and func-
tional significance, and so must be subject to evolutionary selection.
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Changes in brain structure follow a remarkably stable pattern
over ∼450 My in the vertebrate lineage: it is always the same

brain parts that become enlarged when overall brain size
increases (1). Moreover, in studies of individual variation in
humans and other mammals, when overall brain size is larger,
those same divisions as would be predicted by looking at brain
enlargement across taxa are also found to be preferentially en-
larged (2, 3). Such regularities in brain scaling from the in-
dividual to the taxon level suggest that the developmental
mechanisms which generate central nervous systems are strongly
conserved across species (4).
To tease apart the features of the isocortex contributed by

the scaling of conserved developmental mechanisms from those
features which might be specially selected for in a given niche or
species, we have created an empirically informed, mathematical
model of cortical neurogenesis. The model elucidates how the
dials and levers made available by conserved developmental
mechanisms allow selection to shape the basic landscape of the
embryonic cortex. The extent to which any particular cortical
area (e.g., a visual or language area) has been a special subject of
selection can be better evaluated given the baselines provided by
this evolutionary developmental or “evo-devo” model.
The modeling approach presented here provides an explicit

structure to assimilate known data and predict unknowns, both

for developmental kinetic parameters and for the resultant time
courses of neuronal and progenitor cell populations, for the
entire range of mammalian brain sizes and across a spatial axis
within the respective cortices. Our model incorporates important
insights from several previously published mathematical models of
cortical neurogenesis which focus on more limited sets of species
or which consider spatial variations in a single species (5–10).

Scope of the Model
The mathematical model aims to mimic a set of key, basic pro-
cesses by which cortical neurons are produced and distributed
to cortical layers. Here we summarize those processes and also
point out other sources of cortical structure which are not within
the scope of the model.

Key Features of Cortical Neurogenesis. A founding population of
precursor cells in ventricular zones near the wall of the cere-
bral vesicles initially undergoes rounds of symmetric division,
whereby both daughter cells are precursors, thus swelling the
precursor pool. Neurogenesis begins when some divisions in
the precursor pool become asymmetric: with some probability
a daughter cell is now a differentiated neuron which will not
undergo further rounds of cell division and will migrate out of
the ventricular zone (5, 11). Our dynamical model tracks the
size of two populations: the precursor pool and its neuronal
progeny. After Caviness and coworkers, we refer to the prob-
ability of a daughter cell being a neuron as the “quit fraction”
(5). As neurogenesis proceeds, the quit fraction becomes larger
[although variations from monotonic increase have been reported
(12) and are tested in the present model]. When the quit fraction
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is greater than one-half, the majority of the cells produced are
neurons and the precursor pool depletes. Along with the quit
fraction, the model includes two other time-dependent kinetic
parameters: the cell-cycle duration and the probability that
either of the two cells resulting from a division dies. Neurons
migrate to populate the developing layers of the cortex, the first
produced neurons being more likely to populate the deep cor-
tical layers (VI and V); neurons destined for the progressively
more superficial layers (VI through II) subsequently migrate
through the already-present layers (8, 13, 14). In our model, the
relative probability of a neuron being assigned to an upper or
lower cortical layer varies dependent on its time of production.
Our model does not incorporate other factors which cause

local, area-dependent variations in neuron number during neu-
rogenesis and later in development, for example, incident axonal
projections of the various sensory modalities entering the cortex
at particular locations or locally present genetic cues (15–17). In
Discussion, we consider how such sources of variation can add
richer structure to the smoothly changing cortical landscape
produced by our model.

Empirical Support.Necessary empirical data to inform the model’s
inputs and to test its predictions against measured numbers of
neurons, postnatally or in adulthood, are distributed with varying
degrees of completeness over 6–10 mammalian species. These
data include the number of precursor cells, the adult distribution
of cortical neurons, the developmental timing of cortical neu-
rogenesis, and kinetic parameters (cell-cycle rates, death rates,
and the quit fraction). From this information we estimate targets
for precursor amplification and adult layer distribution of neu-
rons across the range of mammalian brain sizes from small
rodents to primates (Fig. 1) (18–24). For the kinetic parameters
governing the cell-cycle rate and the quit rate (but not for the
death rate, for which we used fixed parameters), we used pub-
lished data to inform initial guesses of these parameters (5, 13,
14, 25–29) and then, for each cortex size, we searched over many
candidate sets of the parameters to find those producing the
best match to the targets for amplification and layer assignment
of neurons.

Results
The model presented in this article can account for the massive
increase over mammalian evolution in the number of cortical
neurons as arising from biologically plausible, continuous changes
to the kinetic parameters of a developmental mechanism which
is conserved across species (Fig. 2). The initial cortical precursor
population is not required to change significantly across species
to support the change of approximately five orders of magni-
tude in the size of the adult cortical neuronal population. The
increase in total adult number of cortical neurons is predicted
to have a concomitant increase in the proportion of those neurons
occupying the upper layers (II–IV) of the cerebral cortex. The
model explains recently demonstrated global gradients (reaching
up to fivefold variation, but also subject to local, areal deviations)
in the number of neurons per column across a spatial axis in
primate cortices (30, 31) as arising from intracortical gradients in
the kinetics of neurogenesis which are known to exist in rodents,
carnivores, and primates (13, 27, 32–36). A reduced gradient
observed in a number of rodents is also consistent with the model’s
predictions (Fig. 3) (20). In all cases, the model predicts a gradient

Fig. 1. (A) Estimates for the founder population (dashed line) and total
neuronal output of the ventricular zone (solid line) as a function of cortex
score sc. The solid symbols represent adult cortical neuron counts in rodents
(blue disks) and primates (red squares), each multiplied by a factor of 1.5 to
allow for the large fraction of neurons that dies after reaching the cortex.
The open symbols represent empirical counts of cells in the precursor pools
of rodents (blue circles), carnivores (green triangles), and a sheep (orange
diamond). The ratio of the two fitted functions gives an estimate of the
amplification factor for a given cortex score. See SI Appendix, Tables S1 and
S2 for data and sources. (B) To estimate the proportion of neurons whose
adult location is in the upper layers (II–IV) versus lower layers (V and VI) of
the cortex, a linear regression of the proportion as assessed in six rodents
(blue disks), three carnivores (green triangles), and five primates (red
squares) against cortex score sc is carried out. For species and sources, see SI
Appendix, Table S3.

Fig. 2. Model neuronal output over embryonic days, across the cortex for
mouse (Left) cortex score 0.701, ferret (Middle) cortex score 1.714, and
macaque (Right) cortex score 2.472. Model parameters for (A) the quit
fraction, (B) the cell-cycle duration in hours, and (C) the death rate in the
ventricular zone result in trajectories for the precursor pool (D) and the total
neuronal population (E) given on a log scale as a multiple of the initial
precursor populations for each species. The thick red line in each case cor-
responds to the later-developing (typically posterior) regions, compared with
the earlier progressing (typically anterior) cortex, represented by the thinner
yellow line. The cross-cortex gradient in neuronal output is predicted to be
more pronounced in those species with a larger cortex. An alternative set of
parameters, represented by dashed lines in A and B, is tested for macaque
only; the resultant populations are given by the dashed lines in D and E.
Empirical evidence suggests a nonmonotonic trajectory for q(t) and c(t) in
macaque, although the persistence of a large precursor pool in late neuro-
genesis, as implied by the present model, is not expected; see Discussion.
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in total neuron number and the ratio of infra- to supragranular
layer neurons along a spatial axis.

Cross-Species Increases in Neuron Number and Upper Layer Pro-
portion. We have identified coordinate changes to the pro-
gression of the quit fraction q(t), the cell-cycle duration c(t), and
the cell death rate d(t) which can account, to high accuracy, for
the changes seen in upper and lower cortical neuron numbers
across the range of mammalian cortex sizes. The accuracy with
which the empirical targets for those neuron numbers are
reproduced is within 4% of the target values in all cases and
within less than 1% for intermediate and larger cortices (SI
Appendix, Fig. S7F). Our search scheme does not exhaust the
space of biologically plausible parameters, so it may be assumed
that higher accuracy is possible. However, the current absence of
empirical data with which to compare such predictions, along
with the approximate nature of the targets, means the pursuit of
higher accuracy predictions is of uncertain value at this time. For
example, future anatomical data may support the suggestion that
the layer proportion of neurons varies by taxonomic group and
not only by cortex size. In that eventuality, the model’s targets
ought to also reflect group differences in upper and lower neu-
ron number, and this would necessarily change the best fit pa-
rameters for the species in question.
Studies have shown evidence that the cell-cycle rate (in ferret

and monkey) and quit fraction (in monkey) may be reduced in
late neurogenesis (12, 27, 28). We used the present model to
predict the impact of such nonmonotonic parameter functions
for c(t) and q(t) in the macaque (Fig. 2, dashed lines). Under our
assumptions, the impact was to increase neuronal output mod-
estly (by about an order of magnitude less than the change due to
cross-cortical gradients) and there was the problematic prediction
of a large precursor pool persisting as neurogenesis came to an
end. The precise trajectory of kinetic parameters can be decisive,
however, and future empirical measurements may resolve the
discrepancy or reveal the model assumptions as being inadequate.

Intracortex Increases in Neuron Number and Upper Layer Proportion.
Neurogenesis is known to progress at location-dependent rates,
varying within the embryonic cortices of rodents, carnivores, and
primates (13, 27, 32–36), whereby the nonlimbic isocortex is pop-
ulated with neurons in a generally anterior to posterior progres-
sion. Modeling the effect of such spatial gradients in developmental
timing (by adjusting the progression of the parameters in neuro-
genesis, as described in Methods Summary), the predicted outcome
is a gradient in the number of neurons per column along the axis
of variation. The extent of the gradient in neuron number, reaching

up to fivefold in large primate cortices, is consistent with known
anatomical gradients in primate neuron number (30, 31). The
model predicts an accompanying shift in the layer proportion of
neurons, favoring upper layers in the later-developing posterior
cortex. Stereological measurements of upper and lower neuron
numbers confirm that the increased complement of neurons per
column in the posterior cortex of primates is largely contained
in the upper layers; the absolute numbers of neurons per column
in layers V and VI vary relatively little across the cortex (20).
Existing models demonstrated that adjustments of the quit
fraction have pronounced influence on total neuronal output (6,
7). Our model recapitulates that in the context of within-cortex
variation (for an intermediate-sized cortex, with cortex score of
2.25, delaying the rise of the quit fraction by 30% gives a fourfold
boost to neuronal output) and moreover predicts a concomitant
shift in the ratio of upper to lower layer neurons.

Cross-Species Differences in the Extent of Intracortical Variation.
Across species, the model predicts that larger cortices will have
a far more pronounced gradient in neuron number and layer
proportion: varying by fivefold in large primates and by just a few
percent in small rodents. The longer period of gestation in pri-
mates makes the difference in neurogenesis end dates more
notable in those species than in rodents. In the macaque monkey,
despite beginning at approximately the same developmental time
in all regions, neurogenesis ends as many as 3 wk later in pos-
terior cortex––an intracortex difference of more than 30% in the
length of the interval (35). By comparison, the anterior–posterior
timing difference in rat may be as long as 2 d, amounting to
perhaps a 25% intracortex difference in the duration of neuro-
genesis (13). Hence, the fractional differences in neurogen-
esis duration across species are not dissimilar. The impact of
lengthening the period of neurogenesis by a given percentage
depends, however, on how many additional rounds of cell division
that extension will allow. Hence, larger brains, where many more
of rounds of cell division take place during neurogenesis, will re-
alize a disproportionate boost in neuronal output in those regions
with extended neurogenesis. This leaves open the possibility that
the intermediate-sized brains (of, e.g., ungulates and some carni-
vores) exhibit a gradient of intermediate slope.

Discussion
Limitations of the Current Model. We have outlined a basic model
in which the kinetics of neurogenesis give rise to an embryonic
cortex whose architecture varies smoothly and systematically
along a spatial axis. However, variations in the mature distri-
bution of cortical neurons are not so smooth, exhibiting local

Fig. 3. Model-predicted interspecies and intra-
cortex differences in the timing, extent, and layer
assignment of cortical neuron output. Shown here
are the predicted amounts of neuronal output (in
terms of amplification of a unit precursor pool)
across the anterior–posterior (spatial) axis of the
cortex over the course of embryonic neurogenesis
(time axis) for three different cortex scores (1.0,
similar to a rat; 1.75, similar to a ferret; 2.5, similar
to a macaque monkey). The larger cortices have a
longer developmental interval, produce orders of
magnitude more neurons in total and, in particular,
have a greater complement of upper layer neurons.
The anterior–posterior gradient in neuron number
becomes more pronounced in larger cortices and it is
the upper layers which accommodate the greater
proportion of the increasing quantities of neurons.
Rat and ferret images courtesy of iStockphoto/GlobalP.
Macaque image courtesy of iStockphoto/JackF.
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deviations in density such as an abrupt change across the
boundary of visual areas 1 and 2, and higher density in sensory
processing areas than adjacent areas (31). We conjecture that
the smooth gradients establish the basic landscape that richer
areal and cellular structure is built upon, as prompted by genetic
markers, projections from subcortical structures, or other locally
present cues (15–17). We offer the following as an example of
how local deviations could be overlaid on the basic landscape set
up by the global gradient in neuron number.
Collins et al. noted that areas involved in sensory processing

had higher neuron densities than some adjacent areas (31). In
our previously published reanalysis of the data of Collins et al.,
we identified the data points which relate to primary sensory
areas in baboon and we used a two-factor statistical model to
look for significant differences in the neuronal density of sensory
areas from what a “location-only” model predicted (30). We
found that primary areas have a density of neurons which is 26%
higher than that predicted for a nonprimary area in the same
location along the global density gradient (Fig. 4). So, clearly,
a mechanism other than smooth, global changes in neurogenesis
is required to fully explain the variations in neuron density. As to
potential mechanisms producing such local variations not in-
cluded in the present model, lower levels of neuron death during
early development have been reported in developing sensory
areas relative to other areas (37) as well as local regulation of the
cell cycle (16). We suggest that those mechanisms, acting in
addition to the global gradients in neurogenesis output described
above, and possibly in concert with further local mechanisms,
may explain the greater number of neurons per unit column in
primary sensory regions.
The present study also makes assumptions based on limited

empirical data about the trajectories of the kinetic parameters
and how such trajectories change across species and orders. In
particular, we have assumed smooth change in kinetic parame-
ters across cortex sizes whereas the reality may be that particular
taxa exhibit idiosyncratic variations (12, 27, 28). Incorporating
future empirical data to refine these assumptions and comparing
the resultant model output to mature distributions of neurons
will illuminate whether the processes included in the model are
adequate or need to be augmented.

Furthermore, the parameter sets which can reproduce target
neuron numbers for a given cortex score to high accuracy are not
unique, as compensating changes to the various parameters can
result in similar neuronal output (SI Appendix, Fig. S7). Future
empirical observations will help to constrain the search space,
revealing some parameter sets as implausible and thus refining
the model’s predictions concerning those parameters which re-
main unobserved. In addition to this, our model considers pa-
rameter variation along a single axis but additional axes of
variation may exist in a given cortex.

Structural and Functional Implications. The generally anterior-to-
posterior changes in cortical neuron number imply a corre-
sponding variation in the types of neural processing that the re-
spective regions of the cortex are most apt to support. In fact, the
cortical variations we have highlighted are aligned with important
functional and processing axes: higher stages of information
processing and integration occur at progressively anterior loca-
tions in the cortex. For example, higher visual areas and associ-
ation areas integrating visual information are in regions anterior
to the primary visual areas (38). From somatosensory areas, in-
formation flows in the anterior direction to the motor areas
where it informs motor control. The notion that anterior regions
have more integrative roles in neural processing is also supported
by their structural network connectivity: Modha and Singh found
that regions in prefrontal cortex are distinguished by high net-
work-topological centrality (39); studies finding a dense core
within the cortical communications network identify nodes dis-
tributed across frontoparietal regions and elsewhere but not in
the most neuron-dense occipital lobe (40, 41). We speculate that
successively higher and more integrative stages of neural pro-
cessing might be best supported by the less neuron-dense archi-
tecture bestowed on anterior cortex by developmental gradients.
Thus, the developmental mechanisms which lead to within-cortex
variations in neural architecture impact cortical function and so
are presumably a target of selection.

Questions Arising.We have given a model of cortical neurogenesis
which demonstrates how a conserved mechanism can explain
both cross-species scaling and key within-cortex variations. What
further empirical data may soon be available to support or chal-
lenge the degree to which coordinate changes, arising from con-
served mechanisms, account for the structure of the cortex? And,
in the midst of so much conservation, what remains variable and
available to selection?
Regarding empirical data, cross-cortex isotropic fractionator

studies in primates revealed the pronounced gradients in neuron
number discussed above (31). Stereological measurements of neu-
ron number carried out in this laboratory show a much more uni-
form distribution of neurons across the rodent cortex (20). Studies
systematically sampling multiple sites in the cortices of nonprimates
would help answer the question of whether gradients in neuron
number and neuron layer assignment are an obligatory feature of
an enlarged cortex or whether they are unique to primates.
As to what parameters remain accessible to selection, given

highly conserved developmental mechanisms, we offer the fol-
lowing as a possible example. Even if neuron number were con-
strained to vary smoothly, in a graded manner, across the cortex,
then the slope of that gradient might be subject to selection. It
seems apparent that those smaller cortices produced by relatively
few rounds of cell division have a limited scope to develop gra-
dients in neuron number by way of spatial variation of neuro-
genesis. It is less clear, however, if or why large cortices could not
be more or less varied across their spatial extent. Can the slope of
the gradient be set independent of cortex size? Answering ques-
tions such as these will further the understanding of the cellular
and molecular mechanisms at work in constructing the brain and
of how those mechanisms are encoded in the genome.

Fig. 4. Using a two-factor model (location and an indicator for primary or
nonprimary area) of neuronal density is better than a location-only model. In
the two-factor model, primary sensory areas have a neuronal density 26%
higher than would a nonprimary sensory area at the same location (the dashed
line is 1.26× the base level density indicated by the solid line). The origin of the
spatial “principal” axis is at the posterior medial pole of the flattened cortex
and it extends toward the anterior lateral pole.
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Methods Summary
The following is an abridged description of the methods used;
a more extensive description is given in SI Appendix.

Modeling the Neuronal Output of the Ventricular Zone. A system of
two ordinary differential equations (ODEs) models the dynamics
of precursor cell replication and neuron production in the ven-
tricular zone. Denoting the number of precursor cells present at
time t by P(t) and the number of differentiated neurons present
by N(t), the following differential equations prescribe how those
populations change in time during neurogenesis:

dPðtÞ
dt

=PðtÞ lnð2Þ
cðtÞ ½1− 2dðtÞ− 2qðtÞð1− dðtÞÞ�

dNðtÞ
dt

=PðtÞ lnð2Þ
cðtÞ ½2qðtÞð1− dðtÞÞ�;

where c(t) is the cell-cycle duration, d(t) is the independent
probability that each daughter cell dies after a cell division,
and q(t) is the probability that a daughter cell is a differentiated
neuron which quits the precursor pool and does not undergo
further rounds of cell division. To interpret the equations, note
that if d and q were equal to zero, the precursor pool would
undergo exponential growth, doubling with each cell cycle of
duration c(t). It is the nondead quitting cells which swell the
neuronal population and hence the rightmost quantity sub-
tracted from the equation for precursors appears as the positive
contribution to the neuronal population. As no neurons are pres-
ent at the start of neurogenesis, N(0) = 0. The amplification
factor achieved by the model is given by the ratio of N(t) at
t = 1 to the size of the initial precursor population.

The Cortex Score and a Universal Time Axis for Neurogenesis. The
timing of neurodevelopmental events can be predicted with
high precision across mammals via the “translating time” model
(4, 19). The particular mathematical form of that model scales
early neurodevelopmental intervals across mammals in a linear
fashion. In the present context, this allows us to shift and scale
the neurogenetic interval of any mammal to lie between t =
0 and t = 1 on a universal time axis (SI Appendix, Fig. S1).
Differences in the length of neurodevelopmental schedules
across species are reflected in the translating time formalism by
the “species scores” ss––loosely speaking, this is a proxy for how
much the interval is scaled. Those scores provide a convenient
axis on which to line up brains, the larger brains generally
having higher ss due to their longer developmental interval. In
the translating time model, a primate-cortex factor spc reflects
the fact that cortical development in primates is delayed rela-
tive to other orders. As the present study focuses on the cortex,
we coin the term “cortex score” and denote it as sc. The cortex
score is simply the species score in the case of nonprimates
(sc = ss) and for primates sc = ss + spc. For those species where
a species score was not available in the literature, we used adult
brain weight as an ad hoc proxy to estimate the species score
(SI Appendix).

Modeling the Layer Assignment of Cortical Neurons. Data from
developmental cell-labeling studies in rat (13) and monkey (14)
are used to parameterize a function which apportions the neuro-
nal output of the ODE model either to lower (layers V and VI) or
upper (layers II–IV). At a given time t in the neurogenetic interval
for a cortex score of sc, the fraction u(t; sc) of total neuronal output
is routed to the upper layers, and 1 − u(t; sc) to the lower layers,
where u(t; sc) is a sigmoid-shaped function given by

uðt; scÞ= 1
2

�
1+ erf

�
t− tswitchðscÞ

w

��
:

The parameter tswitch determines the scaled time at which u(t; sc) =
0.5, w determines the width of the sigmoid’s cross-over, and erf is
the Gauss error function (SI Appendix, Figs. S3 and S4 and section
S3). For a given cortex score, empirical data support an estimate
of tswitch(sc) = 0.675–0.114sc. The parameter w is fixed at 10.3%
of length of the neurogenetic interval, as that is the mean value
measured in both rat and monkey. We can interpret u(t; sc) as
a probability at the level of individual neurons or as a fraction of
instantaneous output at the population level.

Estimating the Required Amount of Neuronal Amplifications and the
Target Adult Layer Distributions of Neurons Using Precursor Pool and
Adult Data.Data from the literature on precursor pool sizes were
collated alongside our laboratory’s stereological measurements
(SI Appendix, Table S1 and section S8). Data on the adult total
neuron number were also collated (SI Appendix, Table S2). A
substantive fraction of neurons dies after reaching the cortex
(this is distinct in our model from cell death occurring in the
ventricular zone), so the adult neuron population numbers are
multiplied by a factor of 1.5 to estimate the total output of
cortical neurogenesis (42, 43). Fig. 1A shows the precursor pool
numbers and 1.5× the adult neuron numbers, along with func-
tions that we fitted to estimate how the same change versus
cortex score. Taking the ratio of the two fitting functions in Fig.
1A, we estimate the amplification factor a for a given cortex
score to be a(sc) = exp(2.81 – 1.254sc + 1.256sc

2).
Fig. 1B displays the regression line we fit to the available adult

layer distribution data (SI Appendix, Table S3) versus cortex
score. This lines serves as the target for neuronal layer pro-
portion for a given species score (see SI Appendix for fit details).

Assimilating Empirical Data for Kinetic Parameters. Data from the
literature are used to generate initial estimates of the parameters
determining the shape of functions modeling the quit fraction
q(t), the cell-cycle duration c(t), and the cell death rate d(t) for
each value of the cortex score (i.e., across the range of cortex
sizes). Given the initial estimate for each parameter, a range
of neighboring values is considered. The final choice of the
parameter set for a given species is that which most closely
reproduces the target population of neurons in the upper and
lower layers, and depletes the precursor pool.
The progression of the quit fraction is modeled as a modified

sigmoid q(t;α,β), constrained to have q(0) = 0 and q(1) = 1 (with
the exception of the latter being relaxed for the test case for
macaque shown in Fig. 2). The width of the sigmoid’s cross-over
is controlled by the parameter α and the midpoint of the cross-
over is reached at time t = β (see SI Appendix, section S5 for
details). Initial estimates for α and β are based on empirical data
for mouse from ref. 5 (SI Appendix, Fig. S5).
The cell-cycle duration, expressed as a fraction of each species’

duration of neurogenesis, is modeled as cðtÞ= cðt; γ; δÞ= γ + ðδ− γÞt
(again with the exception of the test case for macaque shown in Fig.
2) Data from mouse, rat, ferret, and macaque provide initial esti-
mates for γ and δ as a function of cortex score (25–29) (SI Appendix,
section S5).
The progression of the cell death rate is modeled as

dðtÞ= dðt; «;ϕÞ= «+ϕt. Data from rat (44) inform the estimates
« = 0.1 (the value at t = 0) and ϕ = 0.15 [resulting in d(1) =
0.25], and it is assumed, in the absence of other data, that these
values apply across the range of cortex scores. In contrast with
the other kinetic functions, and to make sure the search is suf-
ficiently constrained, the parameters for cell death above are
assumed and are not optimized by the parameter search.
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The parameter τ relates to the layer assignment function, u(t;
sc). The parameter fitting algorithm can shift u(t; sc) along the
time by an amount τ, to amend misalignments between the
empirically informed u(t; sc) and the model’s time axis.

Finding the Best Fit for Kinetic Parameters. For a given candidate
set of parameter values mi = fαi; βi; γi; δi; «i;ϕi; τig, the ODEs for
the corresponding Pi(t) and Ni(t) are solved numerically. The
parameter values tested for each species score are given in
SI Appendix, Table S4. The resultant upper and lower layer com-
ponents of the neuronal output, labeled Ui and Li, respectively,
are calculated as follows:

Ui =
Z1

0

dNiðtÞ
dt

ðuðt+ τiÞÞdt; Li =
Z1

0

dNiðtÞ
dt

ð1− uðt+ τiÞÞdt:

To evaluate how well Ui, Li, and Pi(1), as arising from the choice
of parameters mi, reproduce the target values for the given cor-
tex score, the “error”

Ei = jPið1Þj+ jUi −UT j+ jLi −LT j

is calculated. Here UT and LT are the upper and lower layer
neuronal output targets for the given species (as in Fig. 1A) and
Pi(1) is the relative size of the precursor pool at the end of neuro-
genesis. The particular set of parameters mi which minimizes Ei

for a given cortex score is denoted mp = fαp; βp; γp; δp; «p;ϕp; τpg.
We label the corresponding upper and lower layer neuronal out-
put as Up and Lp, respectively. We checked over 5 × 105 parameter
sets for each cortex score.

Modeling the Effects of Spatial Gradients in Neurogenesis. Viewing
the parameters mp identified above as applying to the “average”
location in cortex, the effects of progressing the corresponding
parameter functions, from their starting values through to their
end values, more quickly in anterior cortex and more slowly in
posterior cortex may be examined (see SI Appendix, section S7
for the mathematical formulation). At the “average cortical lo-
cation” the parameter functions are unaffected by the scaling. At
the extremities of the spatial axis parameter functions are pro-
gressed 10% faster and slower, respectively, than at the average
location. Solving a separate pair of differential equaions for each
spatially indexed Px(t) and Nx(t) produces location-dependent
upper and lower layer outputs Ux and Lx (Fig. 3).
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